Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR.

نویسندگان

  • Rajeswari Mani
  • Sarah D Cady
  • Ming Tang
  • Alan J Waring
  • Robert I Lehrer
  • Mei Hong
چکیده

We used solid-state NMR spectroscopy to investigate the oligomeric structure and insertion of protegrin-1 (PG-1), a beta-hairpin antimicrobial peptide, in lipid bilayers that mimic either the bacterial inner membrane [palmitoyloleoylphosphatidyl ethanolamine and palmitoyloleoylphosphatidylglycerol (POPE/POPG) bilayers] or the red blood cell membrane [neutral palmitoyloleoylphosphatidylcholine (POPC)/cholesterol bilayers]. (1)H spin diffusion from lipids to the peptide indicates that PG-1 contacts both the lipid acyl chains and the headgroups in the anionic membrane but resides far from the lipid chains in the POPC/cholesterol bilayer. (19)F spin diffusion data indicates that 75% of the beta-hairpins have homodimerized N strands and C strands in the anionic membrane. The resulting (NCCN)(n) multimer suggests a membrane-inserted beta-barrel enclosing a water pore. The lipids surrounding the beta-barrel have high orientational disorder and chain upturns, thus they may act as fillers for the pore. These results revise several features of the toroidal pore model, first proposed for magainin and subsequently applied to PG-1. In the POPC/cholesterol membrane, the N and C strands of PG-1 cluster into tetramers, suggesting the formation of beta-sheets on the membrane surface. Thus, the membrane composition plays a decisive role in defining the assembly and insertion of PG-1. The different oligomeric structures of PG-1 help to explain its greater toxicity for bacteria than for eukaryotic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy.

The membrane-bound structure, lipid interaction, and dynamics of the arginine-rich beta-hairpin antimicrobial peptide PG-1 as studied by solid-state NMR are highlighted here. A variety of solid-state NMR techniques, including paramagnetic relaxation enhancement, (1)H and (19)F spin diffusion, dipolar recoupling distance experiments, and 2D anisotropic-isotropic correlation experiments, are used...

متن کامل

Membrane-dependent oligomeric structure and pore formation of a -hairpin antimicrobial peptide in lipid bilayers from solid-state NMR

www.pnas.org#otherarticles This article has been cited by other articles: E-mail Alerts . click here at the top right corner of the article or Receive free email alerts when new articles cite this article sign up in the box Rights & Permissions www.pnas.org/misc/rightperm.shtml To reproduce this article in part (figures, tables) or in entirety, see: Reprints www.pnas.org/misc/reprints.shtml To ...

متن کامل

Membrane-bound dimer structure of a beta-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR.

The intermolecular packing of a beta-hairpin antimicrobial peptide, PG-1, in lipid bilayers is determined using solid-state NMR distance measurements. Previous spin counting experiments showed that PG-1 associates as dimers in POPC bilayers; however, the detailed dimer structure was unknown. We have now measured several intermolecular 13C-19F, 1H-13C, and 15N-13C distances in site-specifically ...

متن کامل

Intermolecular packing and alignment in an ordered beta-hairpin antimicrobial peptide aggregate from 2D solid-state NMR.

The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Tw...

متن کامل

Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.

The insertion of charged amino acid residues into the hydrophobic part of lipid bilayers is energetically unfavorable yet found in many cationic membrane peptides and protein domains. To understand the mechanism of this translocation, we measured the (13)C-(31)P distances for an Arg-rich beta-hairpin antimicrobial peptide, PG-1, in the lipid membrane using solid-state NMR. Four residues, includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 44  شماره 

صفحات  -

تاریخ انتشار 2006